code学习

压测实践:ClickHouse与Elasticsearch

1 需求分析

1.1 分析压测对象

1)什么是ClickHouse 和Elasticsearch

ClickHouse 是一个真正的列式数据库管理系统(DBMS)。在 ClickHouse 中,数据始终是按列存储的,包括矢量(向量或列块)执行的过程。只要有可能,操作都是基于矢量进行分派的,而不是单个的值,这被称为«矢量化查询执行»,它有利于降低实际的数据处理开销。

Elasticsearch是一个开源的分布式、RESTful 风格的搜索和数据分析引擎,它的底层是开源库Apache Lucene。 它可以被这样准确地形容:

  • 一个分布式的实时文档存储,每个字段可以被索引与搜索
  • 一个分布式实时分析搜索引擎
  • 能胜任上百个服务节点的扩展,并支持 PB 级别的结构化或者非结构化数据
2)为什么要对他们进行压测

众所周知,ClickHouse在基本场景表现非常优秀,性能优于ES,但是我们实际的业务查询中有很多是复杂的业务查询场景,甚至是大数量的查询,所以为了在双十一业务峰值来到前,确保大促活动峰值业务稳定性,针对ClickHouse 和Elasticsearch在我们实际业务场景中是否拥有优秀的抗压能力,通过这次性能压测,探测系统中的性能瓶颈点,进行针对性优化,从而提升系统性能。

1.2 制定压测目标

压测实践:ClickHouse与Elasticsearch

为什么会选择这个(queryOBBacklogData)接口呢?

1)从复杂度来看,接口(queryOBBacklogData)查询了5次,代码如下:
/** * 切ck-queryOBBacklogData * @param queryBO * @return */public OutboundBacklogRespBO queryOBBacklogDataCKNew(OutboundBacklogQueryBO queryBO) {    log.info(" queryOBBacklogDataCK入参:{}", JSON.toJSONString(queryBO));    // 公共条件-卡最近十天时间    String commonStartTime = DateUtils.getTime(DateUtil.format(new Date(), DateUtil.FORMAT_DATE), DateUtils.ELEVEN_AM, 1, -10);    String commonEndTime = DateUtils.getTime(DateUtil.format(new Date(), DateUtil.FORMAT_DATE), DateUtils.ELEVEN_AM, 1, 1);    // 越库信息-待越库件数&待越库任务数    WmsObCrossDockQueryBo wmsObCrossDockQueryBo = wmsObCrossDockQueryBoBuilder(queryBO,commonStartTime, commonEndTime);    log.info("queryOBBacklogDataCK-wmsObCrossDockQueryBo: {}", JSON.toJSONString(wmsObCrossDockQueryBo));    CompletableFuture<OutboundBacklogRespBO> preCrossDockInfoCF = CompletableFuture.supplyAsync(            () -> wmsObCrossDockMapper.preCrossDockInfo(wmsObCrossDockQueryBo), executor);    // 集合任务信息-待分配订单    WmsObAssignOrderQueryBo wmsObAssignOrderQueryBo = wmsObAssignOrderQueryBoBuilder(queryBO, commonStartTime, commonEndTime);    log.info("queryOBBacklogDataCK-wmsObAssignOrderQueryBo: {}", JSON.toJSONString(wmsObAssignOrderQueryBo));    CompletableFuture<Integer> preAssignOrderQtyCF = CompletableFuture.supplyAsync(            () -> wmsObAssignOrderMapper.preAssignOrderInfo(wmsObAssignOrderQueryBo), executor);    // 拣货信息-待拣货件数&待拣货任务数    WmsPickTaskQueryBo wmsPickTaskQueryBo = wmsPickTaskQueryBoBuilder(queryBO, commonStartTime, commonEndTime);    log.info("queryOBBacklogDataCK-wmsPickTaskQueryBo: {}", JSON.toJSONString(wmsPickTaskQueryBo));    CompletableFuture<OutboundBacklogRespBO> prePickingInfoCF = CompletableFuture.supplyAsync(            () -> wmsPickTaskMapper.pickTaskInfo(wmsPickTaskQueryBo), executor);    // 分播信息-待分播件数&待分播任务    WmsCheckTaskDetailQueryBo wmsCheckTaskDetailQueryBo = wmsCheckTaskDetailQueryBoBuilder(queryBO, commonStartTime, commonEndTime);    log.info("queryOBBacklogDataCK-wmsCheckTaskDetailQueryBo: {}", JSON.toJSONString(wmsCheckTaskDetailQueryBo));    CompletableFuture<OutboundBacklogRespBO> preSowInfoCF = CompletableFuture.supplyAsync(            () -> wmsCheckTaskDetailMapper.checkTaskDetailInfo(wmsCheckTaskDetailQueryBo), executor);    // 发货信息-待发货件数    WmsOrderSkuQueryBo wmsOrderSkuQueryBo = wmsOrderSkuQueryBoBuilder(queryBO, commonStartTime, commonEndTime);    log.info("queryOBBacklogDataCK-wmsOrderSkuQueryBo: {}", JSON.toJSONString(wmsOrderSkuQueryBo));    CompletableFuture<Integer> preDispatchCF = CompletableFuture.supplyAsync(            () -> wmsOrderSkuMapper.preDispatchInfo(wmsOrderSkuQueryBo), executor);    return processResult(preCrossDockInfoCF, preAssignOrderQtyCF, prePickingInfoCF, preSowInfoCF, preDispatchCF);}      
2)接口(queryOBBacklogData),总共查询了5个表,如下:
wms.wms_ob_cross_dockwms.wms_ob_assign_orderwms.wms_picking_task.wms.wms_check_task_detailwms.wms_order_sku      
3)查询的数据量,如下:
select   (ifnull(sum(m.shouldBeCrossedDockQty),   0) -        ifnull(sum(m.satisfiedCrossedDockQty),   0)) as preCrossStockSkuQty,   count(m.docId) as preCrossStockTaskQtyfrom   wms.wms_ob_cross_dock m final    prewhere        m.createTime >= '2021-12-03 11:00:00'   and m.createTime <= '2021-12-14 11:00:00'   and m.warehouseNo = '279_1'   and m.orderType = '10'   and tenantCode = 'TC90230202'where   m.deleted = 0   and m.deliveryDestination = '2'   and m.shipmentOrderDeleted = 0   and m.status = 0      
压测实践:ClickHouse与Elasticsearch

从上面SQL截图可以看出,查询待越库件数&待越库任务数,共读了720817行数据

select count(distinct m.orderNo) as preAssignedOrderQtyfrom wms.wms_ob_assign_order m final    prewhere        m.createTime >= '2021-12-03 11:00:00'        and m.createTime <= '2021-12-14 11:00:00'        and m.warehouseNo = '361_0'        and tenantCode = 'TC90230202'where m.taskassignStatus = 0  and m.deliveryDestination = 2  and m.stopProductionFlag = 0  and m.deleted = 0  and m.orderType = 10      
压测实践:ClickHouse与Elasticsearch

从上面SQL截图可以看出,查询集合任务信息-待分配订单,共读了153118行数据

select minus(toInt32(ifnull(sum(m.locateQty), toDecimal64(0, 4))),             toInt32(ifnull(sum(m.pickedQty), toDecimal64(0, 4)))) as prePickingSkuQty,       count(distinct m.taskNo) as prePickingTaskQtyfrom wms.wms_picking_task m final    prewhere        m.shipmentOrderCreateTime >= '2021-12-03 11:00:00'        and m.shipmentOrderCreateTime <= '2021-12-14 11:00:00'        and m.warehouseNo = '286_1'        and tenantCode = 'TC90230202'where m.pickingTaskDeleted = 0  and m.deliveryDestination = 2  and m.pickLocalDetailDeleted = 0  and m.shipmentOrderDeleted = 0  and m.orderType = 10  and (m.operateStatus = 0 or m.operateStatus = 1)      
压测实践:ClickHouse与Elasticsearch

从上面SQL截图可以看出,查询拣货信息-待拣货件数&待拣货任务数,共读了2673536行数据

select minus(toInt32(ifnull(sum(m.locateQty), toDecimal64(0, 4))),             toInt32(ifnull(sum(m.pickedQty), toDecimal64(0, 4)))) as prePickingSkuQty,       count(distinct m.taskNo) as prePickingTaskQtyfrom wms.wms_picking_task m finalprewhere        m.shipmentOrderCreateTime >= '2021-12-03 11:00:00'        and m.shipmentOrderCreateTime <= '2021-12-14 11:00:00'        and m.warehouseNo = '279_1'        and tenantCode = 'TC90230202'where m.pickingTaskDeleted = 0  and m.deliveryDestination = 2  and m.pickLocalDetailDeleted = 0  and m.shipmentOrderDeleted = 0  and m.orderType = 10  and (m.operateStatus = 0 or m.operateStatus = 1)      
压测实践:ClickHouse与Elasticsearch

从上面SQL截图可以看出,查询分播信息-待分播件数&待分播任务,共读了1448149行数据

select ifnull(sum(m.unTrackQty), 0) as unTrackQtyfrom wms.wms_order_sku m final    prewhere        m.shipmentOrderCreateTime >= '2021-12-03 11:00:00'        and m.shipmentOrderCreateTime <= '2021-12-14 11:00:00'        and m.warehouseNo = '280_1'        and m.orderType = '10'        and m.deliveryDestination = '2'        and tenantCode = 'TC90230202'where m.shipmentOrderDeleted <> '1'  and m.ckDeliveryTaskDeleted <> '1'  and m.ckDeliveryTaskDetailDeleted <> '1'  and m.ckDeliveryTaskStatus in ('1','0','2')      
压测实践:ClickHouse与Elasticsearch

从上面SQL截图可以看出,查询发货信息-待发货件数,共读了99591行数据

2 测试环境准备

为了尽可能发挥性能压测作用,性能压测环境应当尽可能同线上环境一致,所以我们使用了和线上一样的环境

3 采集工具准备

监控工具
  1. ​​http://origin.jd.com/​​ :监控JVM,方法级别监控(提供秒级支持)
  2. ​​http://console.jex.jd.com/​​ :提供异常堆栈监控,火焰图监控、线程堆栈分析
  3. ​​http://x.devops.jdcloud.com/​​ :支持查看clickhouse/Elasticsearch数据库服务每个节点的cpu使用率
  4. ​​http://dashboard.fireeye.jdl.cn/​​ :监测应用服务器cpu使用率、内存使用率

4 压测执行及结果分析

4.1 编写压测脚本工具

Forcebot(​​http://forcebot.jd.com)​​ 是专门为开发人员、测试人员提供的性能测试平台,通过编写脚本、配置监控、设置场景、启动任务、实时监控、日志定位、导出报告一系列操作流程来完成性能测试,灵活的脚本配置满足同步、异步、集合点等多种发压模式。

帮助文档(​​http://doc.jd.com/forcebot/helper/)​​

4.2 设计压测数据

4.2.1 前期压测中名词解释
  • DBCP:数据库连接池,是 apache 上的一个Java连接池项目。DBCP通过连接池预先同数据库建立一些连接放在内存中(即连接池中),应用程序需要建立数据库连接时直接到从接池中申请一个连接使用,用完后由连接池回收该连接,从而达到连接复用,减少资源消耗的目的。
  • maxTotal:是连接池中总连接的最大数量,默认值8
  • max_thread:clickhouse中底层配置,处理SQL请求时使用的最大线程数。默认值是clickhouse服务器的核心数量。
  • coordinating:协调节点数,主要作用于请求转发,请求响应处理等轻量级操作
  • 数据节点:主要是存储索引数据的节点,主要对文档进行增删改查操作,聚合操作等。数据节点对cpu,内存,io要求较高, 在优化的时候需要监控数据节点的状态,当资源不够的时候,需要在集群中添加新的节点
4.2.2 压测数据

clickhouse数据服务:32C128G6节点2副本

应用服务器:4核8G2

maxTotal=16

注:每次压测前,一定要观察每个数据节点的cpu使用率

压测实践:ClickHouse与Elasticsearch

注:从上面压测过程中,序号6-12可以看出,并发用户数在增加,但tps没有幅度变化,检查发现bigdata dbcp数据库链接池最大线程数未配置,默认最大线程数是8,并发用户数增加至8以后,clickhouse cpu稳定在40%~50%之间不再增加,应用服务器CPU稳定在25%左右。

之后我们调整maxTotal=50,通过调整max_thread不同的值,数据库节点CPU使用率保持在50%左右,来查看相应的监测数据指标:应用服务CPU使用率、TPS、TP99、并发用户数。

压测实践:ClickHouse与Elasticsearch

clickhouse数据节点,CPU使用率:

压测实践:ClickHouse与Elasticsearch

Elasticsearch数据服务:32C128G6节点2副本

应用服务器:4核8G2

Elasticsearch同样保持数据库服务CPU使用率达到(50%左右),再监控数据指标tps、tp99

调整指标如下:coordinating协调节点数、 数据节点、poolSize

指标1:coordinating=2,数据节点=4,poolSize=400

压测实践:ClickHouse与Elasticsearch

注:在压测的过程中发现,coordinating节点的cpu使用率达到51.69%,负载均衡的作用受限,所以协调节点需扩容2个节点

指标2:coordinating=4,数据节点=5,poolSize=800

压测实践:ClickHouse与Elasticsearch

注:在压测的过程中,发现CPU使用率(数据库)ES数据节点在40%左右的时候,一直上不去,查看日志发现activeCount已经达到797,需要增加poolSize值

指标3:coordinating=4,数据节点=5,poolSize=1200

压测实践:ClickHouse与Elasticsearch

注:压测过程中,发现coordinating协调节点还是需要扩容,不能支持现在数据节点cpu使用率达到50%

Elasticsearch数据节点及协调节点,CPU使用率:

压测实践:ClickHouse与Elasticsearch

我们在压测的过程中发现一些之前在开发过程中没发现的问题,首先bdcp数bigdata应用服务器,使用的线程池最大线程数为8时,成为瓶颈,用户数增加至8以后, clickhouse的cpu稳定在40%~50%之间不在增加,应用服务器CPU稳定在25%左右,其次warehouse集群协调节点配置低,协调节点CPU使用率高,最后是clickhouse-jdbc JavaCC解析sql效率低。

4.3 结果分析

4.3.1 测试结论
  • max_thread=32时,支持最大TPS 是37,相应TP99是122
  • max_thread=2时,支持最大TPS 是66,相应TP99是155
  • max_thread=1时,支持最大TPS 是86,相应TP99是206
  • Elasticsearch:对应的TPS是192,TP99是3050
  • clickhouse:对应的TPS 是86,TP99是206
4.3.2 优化建议
  1. 对ES协调节点进行扩容
  2. bigdata应用线程池最大线程数调高至200
  3. bigdata应用 dbcp线程池maxTotal设置成50
  4. 读取配置文件工具类增加内存缓存