红黑树的实现
红黑树的五个重要性质:

实现代码:
import com.sun.org.apache.regexp.internal.RE;
import java.util.ArrayList;
import java.util.TreeMap;
import java.util.Random;
public class RBTree<K extends Comparable<K>, V>{
// 创建静态变量
private static final boolean RED = true;
private static final boolean BLACK = false;
private class Node{
public K key;
public V value;
public Node left, right;
public boolean color;
public Node(K key, V value){
this.key = key;
this.value = value;
left = null;
right = null;
color = RED;
}
}
private Node root;
private int size;
public RBTree(){
root = null;
size = 0;
}
public int getSize() {
return size;
}
public boolean isEmpty() {
return size == 0;
}
// 判断节点node的颜色
private boolean isRed(Node node){
if (node == null)
return BLACK;
return node.color;
}
// 左旋转
/*
node x
/ \ 左旋转 / \
T1 x -------------> node T3
/ \ / \
T2 T3 T1 T2
*/
private Node leftRotate(Node node){
Node x = node.right;
// 左旋转
node.right = x.left;
x.left = node;
x.color = node.color;
node.color = RED;
return x;
}
/*
右旋转
node x
/ \ 右旋转 / \
x T1 -------------> y node
/ \ / \
y T3 T1 T2
*/
private Node rightRotate(Node node){
Node x = node.left;
// 右旋转
node.left = x.right;
x.right = node;
x.color = node.color;
node.color = RED;
return x;
}
// 颜色翻转
private void flipColor(Node node){
node.color = RED;
node.left.color = BLACK;
node.right.color = BLACK;
}
// 向红黑树中添加新的元素(key, value)
public void add(K key, V value) {
root = add(root, key, value);
root.color = BLACK; // 最终根节点为黑色节点
}
// 向以node为根的红黑树中插入元素(key, value),递归算法
// 返回插入新节点后红黑树的根
private Node add(Node node, K key, V value){
if(node == null){
size ++;
return new Node(key, value); // 默认为红色节点
}
if(key.compareTo(node.key) < 0)
node.left = add(node.left, key, value);
else if(key.compareTo(node.key) > 0)
node.right = add(node.right, key, value);
else // key.compareTo(node.key) == 0
node.value = value;
// 维护红黑树性质
if (isRed(node.right) && !isRed(node.left))
node = leftRotate(node);
// 黑节点左侧连续有两个红节点
if (isRed(node.left) && isRed(node.left.left))
node = rightRotate(node);
if (isRed(node.left) && isRed(node.right))
flipColor(node);
return node;
}
// 返回以node为根节点的二分搜索树中,key所在的节点
private Node getNode(Node node, K key){
if (node == null)
return null;
if (key.compareTo(node.key) == 0)
return node;
else if (key.compareTo(node.key) < 0)
return getNode(node.left, key);
else // if (key.compareTo(node.key)) > 0
return getNode(node.right, key);
}
public boolean contains(K key) {
return getNode(root, key) != null;
}
public V get(K key) {
Node node = getNode(root, key);
return node == null ? null : node.value;
}
// 更新操作
public void set(K key, V newValue) {
Node node = getNode(root, key);
if (node == null)
throw new IllegalArgumentException(key + " deesn`t exists");
node.value = newValue;
}
// 返回以node为根的二分搜索树的最小值所在的节点
private Node minimum(Node node){
if(node.left == null)
return node;
return minimum(node.left);
}
// 删除掉以node为根的二分搜索树中的最小节点
// 返回删除节点后新的二分搜索树的根
private Node removeMin(Node node){
if(node.left == null){
Node rightNode = node.right;
node.right = null;
size --;
return rightNode;
}
node.left = removeMin(node.left);
return node;
}
// 从二分搜索树中删除键为key的节点
public V remove(K key) {
Node node = getNode(root, key);
if (node != null){
root = remove(root, key);
return node.value;
}
return null;
}
// 删除以node为根的二分搜索树中键为key的节点,递归算法
// 返回删除节点后新的二分搜索树的根
private Node remove(Node node, K key){
if (node == null){
return null;
}
if (key.compareTo(node.key) < 0){
node.left = remove(node.left, key);
return node;
}
else if (key.compareTo(node.key) > 0){
node.right = remove(node.right, key);
return node;
}
else{ // key.compareTo(node.key) == 0
// 待删除节点左子树为空的情况
if (node.left == null){
// 此时的node为待删除节点
Node rightNode = node.right;
node.right = null;
size --;
return rightNode; // 返回右子树根节点
}
// 待删除节点右子树为空的情况
if (node.right == null){
Node leftNode = node.left;
node.left = null;
size --;
return leftNode;
}
// 待删除节点左右子树都不为空的情况
// 找到比待删除节点大的节点, 即待删除节点右子树的最小节点
// 或比待删除结点小的节点,即左子树最大节点
// 用这个节点顶替待删除节点的位置
Node successor = minimum(node.right);
successor.right = removeMin(node.right);
successor.left = node.left;
node.left = node.right = null;
return successor;
}
}
public static void main(String[] args) {
// write your code here
System.out.println("Pride and Prejudice");
ArrayList<String> words = new ArrayList<>();
if (FileOperation.readFile("e:/java/Pride and Prejudice.txt", words)){
System.out.println("Total words: " + words.size());
RBTree<String, Integer> map = new RBTree<>();
for (String word: words){
if (map.contains(word))
map.set(word, map.get(word) + 1);
else
map.add(word, 1);
}
System.out.println("Total different words: " + map.getSize());
System.out.println("Frequency of By: " + map.get("By") );
}
}
}